THE "FOUR C'S" COLD, CLEAN, COMPLEX, CONNECTED # COLD | TEMPERATURES NEEDED BY FISH | CUTTHROAT | STEELHEAD | CHINOOK | BULL
TROUT | EXAMPLES OF AG PRACTICES THAT CAN AFFECT WATER TEMPERATURE | | |-----------------------------|-----------|-----------|---------|---------------|--|--| | Spawning/Egg incubation | 50°F | 55-59°F | 41-58°F | 35-39°F | Removal of Riparian vegetation Grazing in riparian zones or wetlands Crop management in riparian zone/wetland Inadequate riparian buffers Land clearing Burning ditches or riparian buffers Irrigation Practices, Water Management | | | Juvenile rearing | 59°F | 50-55°F | 53-57°F | 50-54°F | | | | Adults/Migration | <72°F | 50-60°F | 50-60°F | <60°F | | | | Degraded/Stressed | >64°F | >60°F | >60°F | >55°F | Rill or furrow irrigation Open ditches, canals, reservoirs Dams, water control structures | | | LETHAL | 82°F | 73°F | 79°F | 73°F | Field runoffDitch, canal, reservoir maintenance | | Temperatures in the shaded areas apply in agricultural landscape ## **CLEAN** | INSTREAM FUNCTIONS | Functional | AT RISK | DEGRADED | EXAMPLES OF AG PRACTICES THAT CAN AFFECT
SEDIMENTS AND WATER QUALITY | |---|--------------------------|---|---|---| | Sediments and Fines in gravel | <12% Fines low turbidity | 12-17%
west side
12-20%
east side
moderate
turbidity | >17% west
>20% east
Exceeds TMDL
standards
High turbidity | Agricultural chemicals that enter the water by leaching, drift, surface runoff or other means Animal or farm waste management Field runoff Waste treatment, storage and transfer Irrigation Practices, Water Management | | Chemicals/Nutrients | Not 303d
Impaired | Moderate
levels of
chemicals,
1 303d
listed
reach | High levels of
nutrients,
several 303d
Listed* | Ditch maintenance Rill or furrow irrigation Open ditches, canals, reservoirs Sediment basin maintenance Removal of riparian vegetation (bank stability) Grazing in riparian zones or wetlands Crop management in riparian | | Substrate
Embeddedness
(Spawning and
incubation areas) | <20% in Reach | 20-30% | >30% in Reach | zone/wetlands Inadequate riparian buffers Land clearing Burning ditches or riparian vegetation Access Roads Stream or shoreline stabilization | ^{* &}lt;5% of streams have been tested. All streams with listed fish must meet water quality standards. # **COMPLEX** | INSTREAM FUNCTIONS | Functional | AT RISK | Degraded | EXAMPLES OF AG PRACTICES THAT
CAN AFFECT INSTREAM HABITAT
COMPLEXITY | | |--|--|--|--|--|--| | Stream Geometry | Stream meanders
are appropriate for
channel and
landform type
Off channel
habitats | Stream
channelized in
sections, banks
stabilized
Some loss of off-
channel habitats | Stream severely
channelized and
straightened.
Stream is
entrenched. No off-
channel areas | Majority of the Irrigation and Water Management Practices, especially: Straightening channels Water diversions and conveyances Ditches, dikes, canals, | | | Width:Depth Ratio | ≤10 | 10-20 | >20 | laterals • Storage reservoirs | | | Streambank Stability | >80% of reach is stable | 50-80%
streambank
stability | <50% of reach is stable | Instream or Stream-adjacent Activities Clearing wood from channel | | | Large Wood
(Particularly
important in
spawning and
Juvenile Rearing
Areas) | West Side: >80 pieces/mi >24" in diameter East Side: >20 pieces/mi >12" in diameter Plus adequate long-term source | Close to function
condition but no
source for future
recruitment in
riparian
vegetation | Little or no instream wood Little or no potential source of wood materials from riparian vegetation | Grade stabilization Streambank and shoreline stabilization Grassed waterways Wetland/wildlife habitat projects All of the practices that affect riparian vegetation, especially Grazing in riparian zones | | | Pool Frequency &
Quality-Alluvial
System
(Adult holding,
cover, overwintering,
refugia) | At least 1 pool
every 5-7 channel
widths. At least 1
pool >3' deep per
reach | Few deep pools Pools have little complexity and cover | Major reduction in
pool frequency
No pools >3' deep
in reaches | or wetlands Crop management in riparian zone/wetlands Riparian buffers Access roads | | | Instream
Flows/Hydrology | Stream is in
equilibrium
Flows sort gravels
Hydrograph
follows seasonal
patterns | Altered peak
flows, baseflows
and timing
relative to
undisturbed
systems | Inadequate instream flows Hydrograph pattern in reversed by controlled flows | | | | Floodplain
Connectivity | Overbank flows
occur at least every
3-5 years | Reduced linkage
to wetlands and
off-channel areas | Severe reduction in floodplain connectivity Armored banks | | | | Watershed Condition - Roads | <2 mi/sq mile
Few valley bottom
roads | 2-3 mi/sq mi
Some valley
bottom roads | >3 mi/sq mi
Many valley
bottom roads | | | #### **CONNECTED** | INSTREAM FUNCTIONS | Functional | AT RISK | DEGRADED | EXAMPLES OF AG PRACTICES THAT
CAN AFFECT FISH PASSAGE | |--|--|--|--|--| | CONNECTIVITY - Fish are able to get from the ocean to their spawning areas and juveniles can go to the sea | No man-made
barriers preventing
upstream or
downstream
migration of fish | Some barriers to
fish passage
Altered flows and
changes in the
drainage network
and some
unscreened
diversions strand
fish | Severe barriers to
upstream and
downstream
migration
Many unscreened
diversions and
impassable barriers
Isolated
populations | Impassable dams Reservoirs with introduced fish Unscreened diversions, ditches, canals Impassable culverts on access roads Water conveyance, diversion, & storage Tide gates or screens that block access to habitat | ### **FUNCTION OF RIPARIAN VEGETATION** Low-gradient valley rivers and streams (alluvial) are wood-dominated self-sustaining systems on both sides of the Cascades. Historic natural riparian vegetation consisted of trees and woody shrubs. Beaver dam complexes influence water table and create wetlands, backwater areas channel meanders. Average site potential tree heights Eastern Washington Western Washington High elevation 120 feet 175 feet 90 feet #### RIPARIAN FUNCTIONS RELATIVE TO | DISTANCE FROM STREAM: | 30% TREE HEIGHT | HALF TREE HEIGHT | 75% TREE HEIGHT | 1-2 TREE HEIGHTS | |---|-----------------|------------------|-----------------|------------------| | Root Strength and bank stability | 50-60% | 60-90% | 90-100% | | | Soil Moisture | 80-90% | 100% | | | | Leaf Litter and Organic
Material Contribution (needed
for fish feeding) | 50-60% | 60-90% | 100% | | | Shade
(Highly dependent on stream
width and topography) | 40-50% | 50-60% | 60-90% | >90% | | Trees falling into stream and contributing large wood to the system (highly dependent on slope, topography, stream width, and channel migrations in the floodplain) | <40% | 40-60% | 60-80% | 80-100% |